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ABSTRACT

The nonlinear interaction equations describing vortex-Rayleigh wave interactions in highly

curved boundary layers are derived. These equations describe a strongly nonlinear interac-

tion between an inviscid wave system and a streamwise vortex. The coupling between the

two structures is quite different than that found by Hall and Smith (1991) in the absence

of wall curvature. Here the vortex is forced over a finite region of tile flow rather than in

the critical layer associated with the wave system. When the interaction takes place the

wave system remains locally neutral as it moves downstream and it's self interaction drives

a vortex field of the same magnitude as that driven by the wall curvature. This modification

of the mean state then alters the wave properties and forces tile wave amplitude to adjust

itself in order that the wave frequency is constant. Solutions of the interaction equations

are found for the initial stages of the interaction in the case when the wave amplitude is

initially small. Our analysis suggests that finite amplitude disturbances can only exist when

the vortex field is finite at the initial position where the interaction is stimulated.
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1. Introduction

Our concern is with the interactioll of l(ayleigh waves and str(,anm:ise vorli(:es in pressure

,gradient driven 1)ounda,'y layers on highly curved walls. The first ste I) is to (h,rive 1he couple, t

strongly not,]itl(,a.r intt,ractiotl e(ltlations gov(+rtling the stna.ll waveh'ngth vot'l('x field driven

t)y small amplitude t(ayleigh waves. The int('ractiotl (,(plaliolls w(, obtait_ ditt'er from tl_os('

found previously by flail and Smith (19!)l). In the latter pa.per it was t'(,llml tllat lllr(,('-

(limeusional Rayh'igh waves drive the vortex fichl in th(' critical layer. The vortex tield thell

acts back on the wave indirectly t)e('a.us(" the wave satisfies a mo(lilied fornl of l(ayhqghs

equation which depends on the st)aIiwise variation of the mean [tow. Ihw¢, wc find _llal

the Rayleigh waves cannot drive th(, vortex tieht in the critical layer. Instead we ti1_(1 thal

the forcing is distributed over the region whet(, the vortex aclivi_y (,c('_lrs. this cnal)h,s 1is

to reduce the interaction prol)lem to a nonlinear partial ,titVer('ntial syst('lll ind(,1)(ql(lent of

1he spanwise varial)le. We constraw_ 111(, small a mplil_l,h' st,lllti()tls (,f l llis sysl(,fll ill Iwo

situations and show that the possil)le emergence of the vortex-wave inl('raction is s(qlsitiv(qv

controlled by the nature of the itl('orlling mean proti]e.

The different stages of vortex-way(' interactions associated wilh viscous (Tollmi('i>

Schlichting) t.ravellitlg waves at(, (lescrit)ed in the papers l)y |tall arm Smith (1988, 1!)89,

19!)0, 19.q 1), Smith a_d \Valt(,n (1.()89), ]/assam and ttall (19,S9), l'lennett, l lall a_,(l .qH_ith

(1991) and l'/la('kaby (19.01). Typically it is fo_lnd that Tollmi(m Schlichling waves t'or('(" the

vortex field in a thin viscous layer at the wall for external flows and away from t],(' walls for

fully developed itlternal flows. For external flows lhe forcing resulls itl al, il,h(,nl(,_eneous

boundary condition for th(, vortex velocity conll)(m('td in the sl)anwise ,lircctiot,. The sit-

uation with Rayleigh waves is more (:omt)licated a]t(I Ilal] and Smith (19.()l) showe(t |hat

Rayleigh waves force the vortex in tile critical layer asso(:ial('d with tlw wave. More l)r( ,-

cisely the wave induces a finite .jump in the gradient of the sl)anwis(" v(.lo('itv ('(m_ponent of

the vortex across the critical layer. The solution of the interaction (,(]_mli()ns in this case

is made dif[icult t)5, the sf)anwise and st.r(,amwise variation ()f the critical layer position; as

yet no numerical solutions of the interaction (,(lUal.i()l,s dcriv('({ l_y llall and Smil], hay(. t)een

obtained.

In the present paper we examine the l(a.yleigh wave-vortex i,_tcr_ctitm t)robh'n_ in the

case of highly curved boundary layers. This regime corr('spontts to high values of lhe (;Srlh'r

numl)er associated with the flow and we assume that the vortex wa.veh'ngth is small compared

to the boundary layer thickness. The latter assumption enables _s to _nak(" _s(" of the small

wavelength large amplitude structure of vortices discussed 1)y [Iall _t_(1 l.akitl (15)88). The

latter calculation was a develot)ment of l.h(" linear and w('akly _l(mlitl('ar il,v(,stigalions of

the GSrtler vortex mechanism 1)y tIall (19_2a,b). In the present ca]('_dat.ion we show that

at small wavelengths the ('ritical lay(q" forcing of the vortex by IIayleigh waves 1)ecomes

exponentially small COml)ared to a new (listrih_m.d m(,chanism operati()nal over a finite ])art

of the boundary layer. We shall see that Ihe forcing is confined to the finite part of the

boundary layer where vortex activity occurs.

The approach of tlall and Lakin (1988) applied to the present problem shows that the

interaction equations can be significantly reduced to a stage where l.he st)anwise dependence

of the disturbances is described analytically. The means that the strongly nonlinear interac-

tion equations for vortex-wave interactions at small wavelengths can 1)e reduced to a partial



differential system dependentonly on the two-dimensionalboundary layer variables.These
interaction equationsare derived in {}2.

A non-trivial problem associatedwith the equationsgoverningvortex-waveinteractions
is the determination of appropriate initial conditions for the equations. In §3 we tackle
the problem for the casewhen a Rayleigh wave of small amplitude is generatedfrom a
finite amplitude vortex field. We shall derive constraints on the vortex field which allow
for the emergenceof a vortex-waveinteraction. In {}4we investigate tile possibility of the
spontaneousgenerationof Rayleigh wavesand vorticesat someposition in the streamwise
direction. Our results suggestthat the stringent constraintswhich must be satisfiedif such
an interaction is to take place virtually rule out the spontaneousgeneration of Rayleigh
wavesand vortices. In §5we discussthe resultsof §3,4and draw someconclusions.

2. Derivation of the Vortex-Wave Interaction Equations for Highly Curved Flows

We consider the flow of a viscousincompressiblefluid of density p, kinematic viscos-

ity v past a rigid wall defined by g = 0 with respect to a coordinate system (z, g, z) with

x, 9, z measuring distance along the wall, normal to the wall and in the spanwise direc-

tion respectively. We assume that x, y, z have been made dimensionless using the lengths

L, LR -1/2, LR -1/2 where L is a lengthscale in the z-direction and R is defined by

U0L
R- (2.1)

//

Here U0 is a typical fluid speed in the x direction and the Reynolds number R is taken to

be large. If we take the wall curvature to be a-ix(x) then the equations to determine the
combined GSrtler vortex-mean flow are

_7 . U* ---_ 01

,22,u* • Vu* + xGu'2/2 = -p_ + Au*.

o -p;

In the above equations G is the GSrtler number defined by

G = R 1/2 a

L'

which is held fixed in the limit R + co I _ is the streamwise pressure gradient at theL

edge of the boundary layer and u*, v*, w',p* have been made dimensionless using the scal,s

Uo, UoR -U2, UoR -1/2 and pUgR -1 respectively. Finally the operator A appearing in (2.2)

is the two-dimensional Laplacian 0_ + 0z2. Thus streamwise diffusion is negligible in (2.2)

since it operates on a longer lengthscale than diffusion in the y, z directions. In addition,

p_. is negligible so that (2.2) is parabolic in x, therefore no mechanism to produce upstream

influence is present.

In order to study the influence of vortex flows on the inviscid instability of shear flows

Hall and Horseman (1991) superimposed on the flow an infinitesimally small Rayleigh waw_.
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Following theseauthors we therefore replacethe functions u*, v*, w* used in the derivation

of (2.2) by writing

u* = u(x,y,z)+_a [U(x,y,z)E+ complex conjugate]+..-

v* = v(x,y,z)+5[V(x,y,z)E+ complex conjugate]+.--, (2.a)

w" = w(x,y,z) + _II4/(x,y,z)E + comprexconjugate]+-..,

where

Thus we have assumed that the disturbance, of arbitrarily small size 5, is periodic in time

(with t scaled on R-I/2Uol ) and varies on a short O(R -1/2) lengthscale in the x direction.

Note that if 6 is sufficiently small then u, v, w satisfy (2.2) with the asterisks removed. The

equations satisfied by the disturbance in the limit R --+ oo are found to be

iaU + Vv+ W. = O,

ia(u - c)U + Vuy + Wu. = -laP,

i_(,_- c)V = -&,
(2.5)

i_(u - c)W = -P=,

with c = c(x) = f_/o_ and P denoting the pressure perturbation corresponding to U, V, W.

A more convenient form of (2.5) is obtained by eliminating the velocity field U, V, W to give

the pressure form of the Rayleigh equation for longitudinal vortex flows; we thus obtain

°..(,, - .).. (,_7 _)_ . O,- _)' - o, (2.6a)

and this must be solved with P periodic in z and subject to

Py=O, y=O,

P --+ 0, y --_ oo.

(2.6b, c)

For a given velocity field u(x, y,z) the eigenvalue problem (2.6) can be solved for o = o(O, c),

and the flow is unstable if eigenvalues can be found with ai < 0. A similar eigenvalue problem

for the temporal instability problem with a real and c complex can also be used to classify

a given flow as stable or unstable. Using the latter approach Hall and Horseman (1991)

were able to show that Ggrtler vortices cause a Blasius boundary layer to become inviscidly

unstable when they become of sufficiently large amplitude. The results found by the latter

authors were in excellent agreement with the experimental observations of Swearingen and

Blackwelder (1987).

In the context of vortex-wave interaction theory interest centres on the neutral solutions

of (2.6) which have o_ = a(x), ac = f_ = constant and a = _5(x) chosen to be large enough to

3



maintain tile wavein this neutral state as it movesdownstream. Ill llall and Smith (1991),

hereafter referred to as HS, it was shown that tile forcing takes place in the critical layer and

leads to a jump ill wy across tim layer, llowever tile expression for the jump ill w,_ vanishes

if P is independent of z at the critical layer. This would for example be i.]w case ill the

degenerate case 'u, = u(x, y) which applies when no vortices are t)reseld, ill tile flow. Tllus a

fundamental property of the interaction is that it, can only occur when the streamwise flow

has a spanwise dependence.

In fact there exists a class of flows which support large amplitude streamwise vortices

ow_r only a finite part of a boundary layer. If the critical layer associated with these flows

is in a region where no vortex activity occurs then the mechanism described in ItS cannot

oI)erate. The class of flows referred to above corresponds to tile strongly nonlinear (;6rtler

vortex flows first dis('ussed by t|all and Lakin (1988). These. flows correspond to the limit
;)

o_ >> 1 (or e(luivalently x >> 1) and haw_ the structure sketched in Figure (1.1).

In Regions I and lI there is no vortex activity and at eeroth order the mean state simply

satisfies the equations governing the unperturbed I)oundary layer. In Region Ill, which

corresponds to 91 < Y < 92, a finite amplitude vortex exists and drives the mean state. The

vortex activity' is reduced exponentially to zero in thin shear layers surrounding ?11 and Y2.

It follows thai if we have a situation in which the critical layer of the system (2.6) associated

with tile above flow is below y = y,, then au alternative mechanisnl to that proposed by

]|S must be found. For the moment we assume that u(x,y,z) appearing in (2.2), with

(u',v*,w*,p*) replaced by (u,v,w,p) has a region adjacent to y = 0 where it is independent

of z and that the critical layer occurs in this region. We now have a situation where the

Rayleigh waw_ satisfying (2.6) cannot force the vortex flow in the manner discussed in ItS

in the region of vortex activity.

Ill fact the vortex-wave interaction in such a case occurs in a simpler manner than that

found in tlS. In order to allow the Rayleigh wave to drive the w_rtex we let 6 in (2.3)

increase until tile nonlinear t.erms involving U, V, 147 in the y and z momentum equations

become comparal)le with those present for the vortex field. It is easy' to see that this occurs

when ,4 = /i'-l/2g with g of order R °. In this case the momentum equations in ('2.'2) are

modified to give

u • Vu + XGn2/2 = -pv + Au

0 -p_ 0 )I I __

- ia'_/V + V V, + W V. + c.c. , (2.7)

-i_(IW + VW_ + WI4/_ + c.c.

where 'c.c.' denotes 'complex conjugate.'

Thus tile vortex field is now driven by the Rayleigh wave through the forcing terms ol,

the right hand side of (2.7). The Rayleigh wave is determined by (2.6) and so is itself a

f, mction of u(x, y,z), thus there is a strongly nonlinear coupling between the vortex and

the wave fields. In order that the Rayleigh wave remains neutral as it moves downstrean!

the wavespeed adjust itself to the fluid speed at the inflection point. If the frequency is t_,

remain fixed then there is an apparent difficulty because the wavespeed and wavenumber

are effectively fixed by the previous consideration. The required extra degree of freedom i.,



found by allowing 5 to adjust itself so as to modify the mean flow in such a way that tile

frequency remains fixed.

We note that (2.7) fails if u = c in the region of vortex activity and in this case we return

to tile situation discussed by HS. A further important point to notice here is that the size of

the Rayleigh wave, 0(H-1/2), required to driw_ the interaction is so small that the Rayleigh

wave critical layer, of depth O(R-a/6), remains linear.

We now indicate how the short wavelength asymptotic structure given by Hall and Lakin

(1988) can be modified to take account of the forcing terms arising from tile interaction of

the Rayleigh wave with itself. We assume that the vortex activity is confined to the region

Yl < .Y < Y2. Ilere we take the vortex wavenumber to be large and expand u, v, w, and p

appearing in (2.7) in tile form

-- a O(_l/k2),u = uo+_.{ua+UaC1}+

v = kU]Ca +_o+ V2C2+O(1/k),

w = WaSa +O(1/k),

(2.$,a, b, c, d)

p = k4po + k3pa -1-/:2p2 -_- k{pa + Ca Pl } + "'"

Here C,_ = cosnkz, ,_'n = sinnkz and the functions u-0, lfo, etc. depend only on _r and 9.

The Rayleigh wave velocity components U, V, IV appearing in (2.7) may be found from the

large k solution of (2.5). In order to determine this structure we expand the wavespeed c in

the form

c = co + Cl/k + "" (2.9)

and a similar expansion is written down for c_. We assume that /_o ¢ Co in yl < Y < y2- We

then write

G=d'k 4+''- ,5=k 2.

The appropriate expansions for U, I_'_W and P are

a- Ca+'"U = (/0+_.U_

v =

a l'_'t,S'l +""
W -- k2

(2.10a, b, c, d)

l /51C1 --_- "-P = /5o+--.+ _

If we substitute the above expansions into (2.5) we find that /Do satisfies tile usual Rayleigh

pressure equation

where Vo is given by

/5oyu _2u°u /5or _ c_°2/5o = O, (2.11 a)
it o i CO

i o( o - co)  0= (2.11b)



At next order we find that

moUl = -2 /
(_o- co)'/ -

w, _ _.o_2co{¢oU,,

t51= 2i_1 { tY0gl_

VoU_

?A0 -- C O

_0ju2 _0}

_oy U1 Vo "[

J
9

to -- Co

We now substitute (2.8) into (2.7) and equate the leading order terms proportional to C_ =

cos kz in tile x and y momentum equations. This yields

V1g0y = - U1

to -- Co

These equations have a consistent solution only if u0, _ satisfy

~

41V_l_o_
xG-ffoUoy -- 1.

to ---_o
(2.12)

This equation has to be solved in conjunction with the Rayleigh equation (2.11a). In fact it

is convenient to write (2.11b) in terms of/50 using (2.16) to give

4_oy P_y (2.13)
x(2(_o_)_/2_$(_o--)1(_=_o)_1.=1.

In fact, since (2.11a) does not involve derivatives with respect to x, we can multiply/50 by

an arbitrary function of x, we therefore write /50 = c_0B2-q-_l/50where the eigenfunction /50

satisfies (2.11a) together with

% %

Poy = O, y = O, Po _ O, y _ e¢, (2.14)

and some normalization condition. We note also that without any loss of generality we cau

take B, P0 to be real. We then write (2.13) as

}_oy B 2 Poy

XG'(_°2)v/2 go - Co (go - Co)2 = 1. (2.15)

Y

Thus the outcome of the Rayleigh wave forcing is to introduce tile term prop£rtional to B 2

in the local mean flow equation (2.15). This in effect means that t0 and /50 can only be

obtained numerically because (2.15)is coupled to (2.11). As in Hall and Lakin (1988) wc



note that the equationsobtained by equating leadingorder vortex terms proportional to C1

do not determine the vortex. The required equation is obtained by equating leading order

terms independent of z in the x momentum equations, this gives

0

This equation can be integrated to give Va2 in the core, if the vortex is to vanish at yl, Y2 we

must have

_2(_0_ox + vouoy - -z0yy+ _)dy = O.
1

We shall now summarize the interaction equations and matching conditions which the mean

state and Rayleigh wave must satisfy if a vortex-wave interaction is to take place.

For convenience we now denote the zeroth order mean flow in Regions I, II, and IlI by

u(x,y) ---- (u(x,y), v(x,y),O). We also denote the Rayleigh wavenumber and wavespeed at

zeroth order by c_, c respectively. The zeroth order problem for the mean flow driven by the
vortex-wave interaction can then be written down in the form:

Regions I, II

Region III

u_ + vu = 0, } (2.16a, b)
ltll x @" ?)Uy : ___tz 2i- Uyy,

ux + vy = O, }u_ {XG'U- 7-_B2"1"P'2[{u-_) 2 J'l"} = 1, (2.17a, b)

Y={uu_ + vuy - uuy + _:_} dy = O, (2.18)
1

together with the boundary conditions

u=v=O, y=O, } (2.19)
tt --+ tte, y ---+ CX3,

and matching conditions

u, uy, t,, P, Pu continuous at y = Yl, Y2- (z2o)

We need not write down separate equations satisfied by P in I, II, Ill since, using the notation

used above, the single equation

- - - 2 ye,, = o, (2.21)

together with

P= 1, y=y_, P_=O, y=0, P=0, y=oc,

where y_ is the critical layer location are sufficient to determine P.

oL(x),c(x) the eigenvalues of (2.21), (2.22)must satisfy

(2.22)

Finally we note that

ctc = constant,



so that the wavefrequencystays fixed as it movesdownstream. Ill effect this constraint is
satisfiedby adjusting the waveamplitude B(x) appropriately as x varies. We further note

that thin shear layers of thickness k=_ are needed near Yl, y2 in order to allow the vortices to

decay to zero exponentially. These layers are passive and require only minor modifications

to the structure given by Hall and Lakin (1988). An analysis in these shear layers shows

that below Yl and above y2 the vortices are smaller by a factor e -k raised to some positive

power. This means that the criical layer forcing mechanism discussed by HS is exponentially

small compared to the distributed mechanism discussed here.

Before investigating the growth of small amplitude Rayleigh waves from some position

along the flow direction we first discuss briefly how the eigenrelation associated with (2.21),

(2.22) can be calculated when u changes by a small amount. We shall assume then that u

can be written as

and we suppose fi" is discontinuous at yd. This discontinuity is associated with the transition

layers at yl, Y2. In these layers the jmnp in fi" is smoothed out in tile manner discussed by

Hall and Lakin (1988). However for simplicity we will assume below that there is just one

such location in tile flow, later we will simply sum over all such locations.

We perturb e_, c, yd, and P by writing

c = _+_,

yd = Yd+_id,

P = T+P.

(2.23a, b, c)

We assume that the quantities denoted by a tilde are smaller than those with a bar. Thv

equations satisfied by P, P are

- e)(P"- - = o, /

P_ = O, y=O, -P---+ O, y --+ oo,

(2.24)

and

- - = - + 2a< - (2.25)

Pv=O, y=0, /5---*0, y--+ oc.

The system (2.24) constitutes an eigenvalue problem for _ with _ = g(y_) with y_ defined by

_i"(yc) = 0. The second system only has a solution if the appropriate orthogonality condition

is satisfied. However we confine our attention to constant frequency neutral modes so that

is given by
--t ~ I!

-- --tlct_c +a_ (2.26)--Ill

?J¢

llere a subscript c denotes a quantity evaluated at the critical layer. The wavenumber

perturbation & is then determined by

&e + _& = 0.

8



Perhapstile easiestway to determine& is to integrate tile differential equation for /5 once

by writing /5 = -PF(y). In order to write (Iown tile condition that tile solution obtained in

this way is continuous across 9 = Y_- we first assume that in the neighborhood of yc, with

= y -yc,
,_ = 05o+,005,+ _:02 +"-

(2.27., b)
_2

= C+ _/Zl -°r- _-tt2 ÷ "'', t-12 :- 0,

-- 9202 yao3 __-2.
P=l÷ ,-_.v ÷ 3_--÷'", 02--

[|ere we have normalized P to unity at the critical layer. After some manipulation we fin(t

that the condition to determine & is

fo _ - _-_ j (7 - C D '),(_ _ e) 3 t)3 ]dy -- 2y--_c+ --yc÷ E (_.28)

where C, D, E are defined by

c = 2Q2t,1_[_- 050]

Fa ~2 i -;/ += v,,&P,_[_,(v,_)-_,"(v2)][_(>,) - ,_]_

Here we have denoted quantities e ,'all 11 a (i e(I _t yd by a d subscript and [ii"(y +) - u"(y2) ]

denotes the jump in u" across ,0d. For a given profile _ we can compute 5 from (2.28) with

g; given by (2.26), however in the vortex-wave interaction we have to maintain a constant

frequency for the wave as it moves downstream. Thus if _ represents the change in u over

some small distance in .r then & determined in this way must satisfy,

ae + a_ = 0 (2.a0)

and in general (_,_ determined by (2.26), (2.28) will not satisfy' this condition. Thus the role

of the wave forcing the mean state now becomes apparent since B(x), the Rayleigh wave

amplitude, must now adjust in order to enable us to satisfy this condition (2.30). Now we

shall investigate the possible growth of small but finite amplitude Rayleigh waves from a

strongly nonlinear vortex flow.

3. Small Amplitude Rayleigh Waves Bifurcating from Strongly Nonlinear Vortex

Flows

In the first instance we shall seek finite amplitude solutions of the interaction equations

(2.16) - (2.22) appropriate to the situation when the Rayleigh wave is small. The expansions

we develop are related to those given by Hall and Lakin (1988) for the case when no Rayleigh

forcing occurs. The major difference between tile two expansion procedures is that the initial

vortex in the work of Hall and Lakin was calculated from tile limiting form of the weakly



nonlinear theory of Hall (1982b). Before discussing how we must incorporate the Rayleigh

wave into the expansions procedure we comment on the solution of (2.16) - (2.22) when
B=0.

Suppose then that at the initial location, taken without loss of generality to be x = 1,
we have

In the absence of any vortex activity the mean flow function u can be expanded in powers of

X = x - 1, we must however assume that g'"(0) = 0 in order that no logarithmic terms occur

in the expansions. At first sight we would expect that tile expansions of 91 and Y2 should

proceed in powers of X. However, unless certain quite severe restrictions are imposed on _,

it can be shown that the required continuity and boundary conditions cannot be satisfied.

This occurs because the existence of a vortex X = 0 means that u, uy are initially continuous

at y,, y2. Thus the contributions to the matching conditions on _ a small distance beyond

X = 0 arising from the perturbations to 91,92 vanish at 0(X). In effect we must therefore

allow yl and Y2 to be perturbed by O(X 1/2) so that the second order, ie 0(X), correction

terms come into play. We therefore write

yl = yl + XI/2yll + Xy12 + "'" ,

92 = y2 +X1/2_21 +X_22+"',

(3.1a, b)

and note that the special case Yl = _02is discussed in the next section. We anticipate a similar

expansion for the Rayleigh disturbance amplitude whilst the wavenumber and wavespeed

expand in whole powers of X. We therefore write

B = X 1/2[_ -[- XB1 -4- ...,

a = _ + X& +-.., (3.2a, b,c)

c = _+X_+...,

with

&c_ + 6g: = O, (3.3)

if the Rayleigh wave is to remain neutral and of constant frequency as it moves downstream.

In Regions I, III we write

u = uB = ft+Xftl+X2ft2+...,

V : V B = 7) + XOl -4- X2_2 -4- "", (3.4a, b, c)

p' = _r0 + X_I +X2_r2 +.-..

whilst tile wall curvature expands as

= xo + XXI + X2x2 + "" •

10



If we substitute the above expansions into (2.16) and equate terms of O(X °) we obtain

ul + vy = 0,

(3.5a, b)

so that in Regions I, III the required solutions are

,/_,'/ _ 71-0

0
Y

= Jj_ + _ [_o- _"]_-_dy,
)

(3.6a, b)

with j = 1,2 and dl, J2 constants to be determined.

In fact J1 is fixed by the condition _1 = O, y = O, this gives

J' =/o (_o- _")_-2dy. (3.7)

and we note that the above integral exists if we assume that fi" = 7r0, _m = O, y = O. In the

core region III we retain (3.4) and expand the Rayleigh pressure function P as

P=P+XPl+... .

At zeroth order the coreflow downstream velocity component is given by

v/A + 2y
72-

and the zeroth order approximations to (2.17a,b) yield

where

1 {K_B2r(y)}_1= v__
_v/_ + 2y

2 _xov/-_-o-o_

[_2 Jf_[_V/--_ + 2yi,dy + xa(A + 2y)}+ u_ sr ,IV-or "fJ=-b
, 6_o(XoG)_

fo _ {/5'2(v_+ 2y - c_)-2}'dY (3.Sa, b,c)I(y) = -(_(°G)3/2 , (v'_ + 2y - e(XoG) ,/_)

Here the constants A, B, K and b are to be determined. In fact the zeroth order approxima-

tions to the condition that _ is continuous at t)j yield

x/A + 29a(Ja + K) - bv/_0 + -xX-(A + 2yl) },
-- 6X o

fu X, (A + 292)}.x/A+29_(Jz+K-[_21_) = b G_o-[_ _ _+2yI'dy+

(3.9a, b)

11



hi addition tile continuity of u,,% at zeroth order at y = Yl, Y2 yields

_/A + 21/j 1

- _(YJ)' _'(_J) - x,oC_(yj) (3.1o_,_)

We recall that .], must satisfy (3.7) in order that ul(0) = O, then (3.9a,b) deter,nine b and

J2 in terms of one remaining unknown constant K. We now use the coreflow expansion to

show that the zeroth order approximation to the vortex condition (2.18) is

bv/_A+2y 1 (A + 2y)2x1 1 ]y2_(oG v/A + 2y_ - troy = -

where

_,,= v/-_
all d

I f_2 ')]($2- S,) - _ l(y)(¢A + 2y.z/v/A + 2y - .)dy.
1

Hence tile above equation together with (3.7), (3.9a,b) yield

b = bl--B2],

bl - ,q2 - ,5'1 3(1 [ _,4],, 2r, S24-'1J +-
1 )

Is;'

bx/-_ 1_' ,2 (3.11a, b,c)
,ql Jo (Tro - (t")_-2dy + X1,S___!_6Xo '

J2 = - I_ + [3212 + bx/_ B2 f_2 v_ + 2y I'dy _,,S'_+--
$2 S' 6Xo

We now substitute for 6_ from (3.6a) into (3.4a) and expand about y = y_, t)2 to obtain

u = _tj + Xl/2ft'J[ljl + X
• (fit9 _ 7r0

tttJYj2 -Jc ?Attj° J' _- tttJ Jj
2 ftJ

-,[- • • •

( )'J }• f ,,j_ _,,,jy_,+ _"- _0 _"
u_ = _'_ + X_/2u"_9_l + X ]u u_ + _ [Tr0- _"q - J_tt''_ +-.-

k

(3.12a, bi

Here _'J, u"J, etc. denote u'(9j), -a"(yj), etc. and the next order correction terms are O(X3/2).

If we perform similar expansions for tim coreflow solution we obtain

Sj Xl/2yj 1 { | _l_j 1 -_}yjtu - _ + x/-X-_,S'j + X _x/-_oGNj[If + yj_ - [_'2131 2Xo_ 2x/_-_ S ] + "' "'

1 Xl/2yjl

_,_ _ ,/-_;,% ,/_;,_ +",
(3.12c, d)
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If the initial profile is chosen such that gJ 5j/_, g" = 1/,. j_) we see that the

order X °,X _/2, terms in (3.12a) and (3.12c) are consistent whilst also are the order .g0 terms

in (3.12b), (3.12d). However if we are to make u and uy consistent up to orders X,X _/2

respectively then we have four equations to satisfy but only three unknowns _hl, Y_, B2 at

our disposal. Thus we cannot in general make u,u v consistent at these orders and the only

possible remedy is to allow for diffusion layers of depth X 1/2 in the neighborhood of Y1,92.

However these layers occur only in I, II where the mean flow satisfies the boundary layer

equations. These blending layers occur where 0_ ,-_ 0_ and enable jumps in u, uy across the

layers to be accommodated.

We shall only consider the behavior near g = Y2, a similar structure holds at 9 = yl- We

define a variable _ by

e= I,,J- {

so that _ --_ ox° 2x_ a_"a We modify (3.4a,b) near y ---- Y2 by writing

= + +...,

"U _- V B -J- Xl/2V(_) _it_ ...

and it is straightforward to show that _), I> satisfy

(3.13a, b)

(3.14c, d)

The solution of (3.14c) which decays when { --+ oc is

(fe-_14 = C2c-_'14t; (_,_) , (3.15)

= s2where U(a,x) denotes the parabolic cylinder function, C2 is a constant and _2 Y21 (2_)1/2

The effect of this extra term in the expansion of u, uy near y._ is to produce terms

C_XU (5,_2),- C2X '/2 (F--_)I/'_ U (_,_) on the right hand sides of (3.12a,b)for j = 2.

A similar analyses near y = !h produces similar terms. We are now in a position to make

(3.11a), (3.12a) consistent up to order X and (3.11b), (3.12b) consistent up to order X 'M.

This is achieved if

2 uJ '

I -2
9jl

,) , q3 '

-itj- )j+l ( _j ) I/2 (_ I --Yjlu y./, + (-1 2_ Cjlt ,(-1)J_j -- _57"

(3.16a, b)
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If C1, C2 are eliminated above we obtain

Aj {y-_, +cojyj,}- 1 [K_-_2Ij]_ X_,5_i (-d"3-rr°) +g'Jdj (3.17a)
,/_s_ 2xo,/_ _

with

u"5 1 U (5, (-1)J_j)(XoG)_
Aj = --+ a_j = 2_(-1) j (3.17b, c)

2 2x/_5 '3' U (_, (-1)JsXj)

In the absence of a Rayleigh wave, ie when/) = 0, we can substitute for K from (3.12b) with

b given by (3.12a) to give a quadratic equation for Yjl. In the presence of a Rayleigh wave

we can only express Yjl in terms of /)2. However if we now derive the condition that the

wave remains neutral up to O(X) then a further equation linking Yjl,/)2 will be obtained.

In addition we note that if the initial data is such that Aj vanishes for j = 1,2 then the

expansions for yj proceed in whole powers of X.

If we use the result (2.29) applied to the O(X) correction to the mean velocity field we
find that

hi + Kh2 .Ji-/)2h3 + J2/_4 + Clh5U(5'z (-1)J_')-t- C2h6U(_, (-1)J_2)= 0. (3.18)

Here the constants hi, hz, h3, h4, hs, h6 are defined by

hi = P (_-_)2 _- (_ _ _)4 (y _ yc)3 (y ..Z yc)2 dy + 2y2c yc

+f0_, 2pP'{ _'x'} _2(U-_- _--)3 "/g'! ------ dff+ _'1 _l ppI (___ 2_)- _ (,i :_)_ )_6:d _y

_._.__ll:_(Pl2)til[t_(_l ) __ _..1-3 __ _212 (H),A2[_,(_72) __ _]-3

(_ : _)_ M' dy,-c--/

ff_ 2PP' [£= , (/,: - 214,,

2P,P;
h_= (_(9,)_ _)_,

2P:P;
h_ = -(_,(f_:) _ _)_,

dy,

14



with

m //

no_ @.

,_1 -It I

and C, D given by (2.29) with _?= _, _ and Ul given by (3.6a). Furthermore Pj, Pj
c _ztctt

etc. denote P, P' evaluated at Yj. If we eliminate C1, C2 and J2 from (3.18) using (3.16b)

and (3.12c) we obtain

h7/) 2 = h8 + hswlAl:Y11 q- hsw2A2:y21 (3.19)

with

h7 = ,T1

h8 =-hi- Jr2 { bl_Lq'l q- XlXl2_)(o Jl}- h4[

-Jr-,$2 J q- ]13 nu h4 12 -- 1 *q'2-

¼2 = h2 - h4.

Finally we then substitute for /_2 from (3.19) into (3.17a) with j = 1,2 to give the coupled

equations for :011,921:

= hlo + hghsh71 + w'2A2h6h, gh'71y21,

= h12 + hllh8h.71 +¢zlAlhshllh2,1y11,

(3.20a, b)

with

h 9 -

] bl X1S1 (_ttl _ 7t.o)

]/lO --

] I + bl xIS2 (_,,2 _ _'o)
hll - h12 -

v TVs ' 3xovS--o-e

(3.21a, b,c,d)

and /+defined by

l+ = ff_ I'_ f-_ + 2ydy

Thus the initial small amplitude form of the vortex and wave are determined at leading

order when the nonlinear equations (3.20a,b) are solved for y11, y21. Note however that hs

appearing above is a quadratic function of these quantities whilst a.'l,CO2 depend on ylly_,

through parabolic cylinder functions so that the solution of (3.20) must be found numerically.
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A numerical example

Ill order to proceed further we must specify an initial velocity profile and curvature distribu-

tion. Without any loss of generality we may take X0 = 1 and we then take the initial profile

to be given by

u= )_y+ 3 ) ' 0<y<_l=l

_i- V/-_ + 2Y
v_ ' ¢'<Y<92=2'

+ {= + 1-exp ; E,/VJ'_ < y < oo (3

Here the constant A is to be specified but we restrict our attention to situations when _' is

always positive. In order that _ and u'v are continuous at the positions y = _),, _'2 we require

that A and G are defined by

A- -(A +
'

1
G=

1
The profile defined above has an inflection point at y = _ so that the wavespeed is given by

A 5

= 2 + 19---2" (3.23)

The first step in the calculations is to solve Rayleigh's equation for/5 with u and g: as given

by (3.22) and (3.23). In Figure (3.1) we show the wavenumber 6 as a function of )_. The

eigenfunctions /5 associated with these modes are shown in Figure (3.2). Though it cannot

be seen easily in this figure we note that at the transition layers yl, y2 the quantities /5,/5'
are continuous whilst /5" is discontinuous.

The constants hi, h2, etc appearing in (3.21) can then be determined using Simpsons Rule

to evaluate the integral and a routine to evaluate parabolic cylinder functions. This was done

using either the series or large argument asymptotic form of the parabolic cylinder functions

dependent on the size of the argument. The equations (3.21) were then solved using a Newton

iteration procedure. The calculations were restricted to the case A = .5, 1, 1.5, 2, 2.5, 3. but

different values of the curvature parameter X, were used. In Figures (3.3a,b,c) we show

the computed values of Yl, Y2 and /_2 as functions of X1. The calculations were carried

out for the values of )_ used to calculate Figures (3.1,3.2) but in fact we were unable to

find solutions of (3.21) for the case )_ = .5. Furthermore the solutions shown could not be

extended beyond the ranges of X1 shown. At the lower end of the ranges in question the

results showed that y11, y21 were tending to a constant plus a multiple of the square root (,f

the difference between X, and it's cutoff value. This suggested to us that at such a point

two solutions of (3.21) were coalescing, however careful searches were unable to find a second

root. Itowever it could well be that other roots exist but our Newton iteration procedure

was not able to detect them. Since the main aim of the present calculation was to determine
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whether physically acceptable solutions of tile vortex-wave interaction equations could be

found near tile position of neutral instability of a Rayleigh wave we did not investigat¢, th{"
matter further.

In fact an inspection of Figure (3.3c) shows that B 2 is negative for a range of values of Xl-

These solutions are not physically acceptable since /3 must be real. At first sight it might

appear that these solutions are relevant to the case when the Rayleigh wave is bifurcating

subcritically from x = 1. This is not the case since our expansion procedure cannot be

simply modified to take account of .r - 1 being negative. This is because the blending layer

structure now has solutions increasing exponentially away from Yl,y2 so that the matching

of u, uy, v camlot be achiew_d where l, lI and ll, Ill meet. Nevertheless we feel that the

solutions of (3,21) with negative D 2 do have some physical significance; we return to that

point in the final section of this paper.

4. The Spontaneous Generation of Rayleigh Waves/Vortices

Suppose that we have an incoming inflectional velocity profile Ct = u(y) at :r = 1. We

use the notation of the previous section and denote the critical level by y = y_ and denote

quantities evaluated at the critical layer by a subscrit)t c. \¥e suppose further that the

position y = y at which Guu_ = 1, where finite amplitude vortices emerge, is, without any

loss of generality, such that y > y_ > 1.

In the first instance we ignore the mean flow correction driven by the vortex structure
and write

u = u +.\'u_ +.\'2u2 + ...,

v = _'+Xvl+X2t_2+..-, (4.1a, b,c)

/Y = _-0 + XTrl + .\'2_'2 +-..,

where X = x - 1. The expansions for u,v fail when y = O(X J/3) where a passive boundary

layer is needed to satisfy the no-slip condition. It should be noted here that v cannot be

specified arbitrarily but must be determined in terms of the initial streamwise profile u(y).

If the above expansions are substituted into the boundary layer equations then we can show
that

ul + v' = O, utq + v_ _ = -Tro + h",

and
--' -- --I I It

_! = 0, 2////2 -_- U_ -_- trll I -'1- Ullt = --71" 1 -1t- ll 1 .2u2 + _1

These equations can be integrated to give

f_ = fz 7to - f/I]u-2dy,

u_ = -u' [_o-_"]a-_@+
'It

(4.2a, b)

(4.3a, b)

(4.4a, b)
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and

f0y -,, -2 _,]_-2dy '"_l = _ [71"1 -- Ul -_- Ul +

_ -_' -" _,_',]a-_dy_. 7r 1 + _t 2 _ It 1 + .-1-

-- -" -' 'vu_l{_1 u, + u_+ }
,2

(4.4a, b)

Here we have made assumptions about the behavior of _ near y = 0 in order that the integrals

shown exist at y = 0. If these assumptions are not made then the solution for y = 0(1) must

have terms involving log X in its small X form. In view of the discussion given at the end

of the section 2 it follows that a and c for the Rayleigh wave associated with the perturbed

velocity profile (4.1) must expand as

O_ = 0 +(_IX -1-(_2X2 -+ ...,

c = _+_lX+_2X2+ '''

(4.5a, b)

If we use the notation of §2 then, in the absence of vortex activity, it follows that &i, g:l, &2, c2

are determined by

- --- -- D__

fJ2}dy_ +--, j=1,2. (4.6)
(_-_)_ 2v_ >

Here Cj, Dj satisfy (2.29) with ((;- 050) replaced by ((:j - gj(y_)). However if the wave is to

remain neutral and of constant frequency we also require that

--I -It

--1.tcttlc
C1 -- "iv filc

-- lit

,,,'{,, ,,, ,,,, , ,,C2 -- tic "alc'ttlc -ii ttc /tlcUl ..t_ l/,2c_-

_."' u_---_ \_'_') J i-," (4.7a, b,c,d)ttc -'c --c

The conditions (4.6), (4.7) impose a constraint on the initial profile u = fi(y) if the Rayleigh

wave is to stay neutral up to order X 2. Shortly we shall see how a small amplitude vortex

emanating from y = _ changes this conclusion. An examination of the passive boundary

layer where y = O(X _/a) shows that this layer does not influence (4.6), (4.7).

Now let us find the effect of a finite amplitude vortex on the above discussion. We

recall from the work of Hall and Lakin (1988) that, if Gg_y = 1 at x = 1, then a finite

amplitude vortex will initially grow within the region -X1/2fh + _ < y < X1/2tj1 + 9 for

small values of X. A result of some consequence for the present investigation is that the

mean flow modification driven by the vortex is O(X a/2) and confined to the same region

as the vortex. We shall choose B, the Rayleigh wave vortex amplitude to be of that size
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which also leads to a mean flow modification of size X 3/2. The corresponding effect of this

mean flow correction on c_ and c can then be again deduced from (2.29) and (2.30). In fact

the size of this effect can be found directly froln (2.29) by noting that fi is now a function

confined to a layer of depth O(X 1/2) well away from the critical layer. This means that tile

only contribution to (2.29) from fi comes from the terms in the integrand proportional to

/3,. Since 75 .., O(X 3/2) we should anticipate a contribution of this size to (2.29), however

we shall see below that some cancellation in the integral occurs so that only a contribution

of size O(X s/2) is generated. Moreover since a is exponentially small away from the critical

layer, the order X sl2 correction terms in the expansions of a and c must be identically zero.

In this case the satisfaction of (2.29) is achieved by the adjustment of B(X).

We define a variable 0 by

0 - (y - .0) (4.13)
X1/,2 ,

where

Gaav=l, (_av)v=0, v=9.

We shall seek a solution of (2.16) - (2.20) by expanding

(4.14)

B= BX 1/2 + ...

and the velocity field in the form

72 = Uoo + X'/'OU,o + X {0_u_o + Uo,} + X_/20u,_ + Xa/'_u.,,,(O) +'",

v = voo+ x'/2Ov,o + x {o2v_o+ v0,} + xa/2ov,, + XvM(O)+.",.

Here the constants u00, etc. are defined by

7200= 1_(_), l/,]o = _'(_)- Guool, 1/,2o= 2u1'(9),

(4.15a, b)

-'(O),7201 = _'l(IJ)' Illl = 721 _oo= _(_), _,10= (y), (4.16a - i)

,,_o= 2_"(v), v0,(._)= 0,(¢), _,1 = _',(_).

Furthermore we assume that the wall curvature X expands locally as

X = Xo + XXa + X2_2 + "". (4.17)

The Region III in this new notation is defined by

-OX '/2 < 0 < OX '/2

whilst I, III are determined by 0 > OX 1/2, 0 < -OX 1/2 respectively. Here 0 is a constant to

be determined and, because of symmetry, it will be sufficient for us to consider only 0 > 0.

In Region II we find, by equating successive powers of X 1/2 in (2.17a), that

G/_OI/OOIIIO : l_

2
U,o + 2u00u20 = O,
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wherc_

- X1 CgUM

Gx2uoo O0

302ttlOU20 tto1ZtlO

+ ull + + /32%
/-too _o0

40
- D oo- (4.18a, b, c, d)

evaluated at y = y. Equations (4.18a,b) are automatically satisfied because of (4.14) and
(4.18c) can be integrated once to give

uA,t = {Ao + _/)2}0 - 1103, (4. t9)

with

)t<l Ul 0 ZtO1 ttlO A1 'U I Oft20Ao = -ull , - (4.20)
_t'o ttoo UO0

We have assumed above that UM is an odd fimction of 0 as was found to be the case by Hall

and Lakin (1988). Following Hall and Lakin we find that in Region I

(/_00 -1- ")'U20- A103>exp {-_[02 - 02]} t[.f (7 _-0)

UM= U (r, V/_)t_ , (4.21)

where we have already made u continuous at the junction of I,II and the continuity of uy at
the junction of I, II then yields

VT u
Ao n cTB 2- 3A10 2

0[A0+ z,9 -
(4.22)

In the absence of the Rayleigh wave forcing we can set B = 0, equation (4.22) then reduces

to the nonlinear eigenvalue problem for 0 found by Hall and Lakin (1988). Here equation

(4.22) is not sufficient to determine/)2 and {7), the required extra condition is obtained by

insisting that the O(X z/2) mean flow correction in I, Il, Ill does not make the Rayleigh

wave wavenumber or wavespeed vary. The effect of the mean flow correction can be seen

fi'om equation (2.29). We expect that the term in (2.29) proportional to _' will provide the

dominant contribution to the integral, this would suggests that the dominant contribution

to the integral would be of order X}. However this contribution vanishes because UM itselt

vanishes at infinity. Similarly the order X 2 contribution vanishes because UM is an odd

function of 0. Now we must set 5 = _ = A = B = 0 because the mean flow correction is

exponentially small at the critical layer. Thus (2.29) leads to the equation

/oo ° OuM(O)dO = O. (4.23)

We note also that the higher order mean flow correction terms also vanish at infinity and

are odd in 0 and therefore do not contribute to (4.23). I11 the derivation of (4.23) we have
used the result

F LO'2u'M(O)dO = --2 OumdO
O0
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Equation (4.23) yields

9 uoo-

, . ( ,vYo)
-> oo ' )

aAI_27/_ 2 + Ao - g

-- ,_/372 "Or- Ao _ kl_2 (4.24)

Thus 0 and B are determined by the coupled system 4.22), (4.24), the system is simplifie, l

by writing

_/_ao0 uooO= 7-' _ =_' ' (4.25.,I,)V2 2

in which case we obtain tlle coupled system

"/B 2 + Ao --3%1 0 2

. '

7B 2 + Ao 3_ 2- _ A1(z_ 3

7B 2+Ao-._102 - 502 o.1+4 ---7---- '
U (_,0)

and if we multiply (4.26b) by 5 and add to (4.26a) we obtain

(4.26a, b)

-a(, +o') u (_,o)
0(:3+o_)- u (_,o)

(4.27)

The right hand side of the above equation is always positive so there are no roots of the

equation for @ positive. Since we have implicitly assumed above that 0 is positive we

conclude that there are no acceptable finite amplitude solutions of the interaction problem.

Thus we have found that small wavelength vortices and Rayleigh waves cannot spontaneously

be generated in a centrifugally and inviscidly unstable boundary layer. We conclude that

the only possibility, is that described in the previous section where we showed that small

amplitude Rayleigh waves can be generated from an O(1) vortex field.

5. Further discussion and conclusion

In Section 3 we saw that the initial stages of vortex-wave interactions in highly curved

boundary layers can be expressed in terms of an asymptotic expansion in powers of the

square root of the distance from the point of neutral stability. Our numerical investigations

of a class of initial profiles showed that in some cases the interaction cannot occur because

the predicted amplitude of the Rayleigh wave is imaginary. In nonlinear hydrodynamic

instability theory this would usually suggest that a subcritical finite amplitude instability

occurs. Here this is not the case because the blending layer structure fails when ;r < 1

because the parabolic cylinder functions now grow exponentially away from the transition

layers.

Thus the solutions obtained in Section 3 with B 2 negative cannot be used to begin a

marching procedure to solve the full interaction equations. Nevertheless we believe that

these solutions are still of some interest and are indeed of particular physical importance.

This is because these solutions will play a crucial role when the streamwise hmgthscale :r - 1
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becomessufficiently small for nonparalleleffectsto comeinto play; seeHall and Smith (1984)
for a related discussionin connectionwith Tollmien-Schlichtingwavesin growing boundary
layers. We do not addressthe nonparallelproblemherebut wenote that nonparalleleffects
come into play when x - 1 becomes so small that streamwise derivatives of the Rayleigh

wave amplitude balance with changes in the amplitude induced by the variation of the mean

state. In this case the interaction is governed by an integro-differential equation wilose large

x asymptotic form reduces to the small x - 1 form found in Section 3. We believe that

the negative /_2 solutions found in Section 3 lead to solutions of the nonparallel evolution

equations having a finite distance singularity. This would explain why they do not connect

with small x - 1 solutions, whilst we believe that the solutions obtained in Section 3 with

positive/_2 can be connected with solutions of the evolution equations.

In Section 4 we investigated the special case which occurs when the interaction begins

with the vortex and Rayleigh wave both having small amplitudes. Here we found that the

nonlinear eigenrelation (4.27) does not have any real solution so that the interaction cannot

take place. We conclude that the spontaneous generation of Rayleigh waves and vortices

cannot occur so that the only possibility is that discussed by Hall and Lakin (1988) with

just a small amplitude vortex emerging from the neutral position. However there is again

a nonparallel evolution problem associated with the analysis of Section 4 if X becomes

sufficiently small. We expect that on the appropriately reduced streamwise lengthscale the

structure outlined in Section 4 can be modified to show that the spontaneous generation of

wave and vortices leads to a finite distance singularity.
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